Improved understanding of vegetation dynamics and wetland ecohydrology via monthly <scp>UAV</scp>‐based classification

نویسندگان

چکیده

Abstract Vegetation classification is an essential prerequisite for understanding vegetation‐water relations at a range of spatial scales. However, in site‐specific applications, such classifications were mostly based on single Unmanned Aerial Vehicle (UAV) flight, which can be challenging grasslands and/or herbaceous‐dominated systems, as those communities are small size and highly mixed. Here, we conducted monthly UAV flights two years riparian wetland Germany, with acquired imagery used vegetation basis under different strategies (with or without auxiliary information from other flights) to increase ecohydrology. The results show that multi‐flight‐based outperformed single‐flight‐based due the higher accuracy. Moreover, improved sensitivity temporal changes community distribution highlights benefits ‐ providing more comprehensive picture evolution. From reference distribution, argue combination three early‐ late‐summer enough achieve comparable flights, while mid‐summer would better timing case only one flight scheduled. With detailed mapping, further interpreted complex spatio‐temporal heterogeneity NDVI explored dominant areas developmental progress each community. Impacts management (mowing events) also evaluated responses between years. Finally, how mapping could help understand landscape ecohydrology, found minimal soil moisture was related peaks local community, grass explained by both topography low conditions. Such bi‐directional relationships proved apart contributing evidence base management, multi‐flight provide fundamental insights into ecohydrology wetlands.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatio-temporal stochastic resonance induces patterns in wetland vegetation dynamics

Water availability is a major environmental driver affecting riparian and wetland vegetation. The interaction between water table fluctuations and vegetation in a stochastic environment contributes to the complexity of the dynamics of these ecosystems. We investigate the possible emergence of spatial patterns induced by spatio-temporal stochastic resonance in a simple model of groundwater-depen...

متن کامل

Preface “Water, climate, and vegetation: ecohydrology in a changing world”

L. Wang1,2, J. Liu3, G. Sun4, X. Wei5, S. Liu6, and Q. Dong7 1Department of Earth Sciences, Indiana University – Purdue University, Indianapolis (IUPUI), Indianapolis, IN 46202, USA 2Water Research Center, School of Civil and Environmental Engineering, University of New South Wales, Sydney NSW, 2052, Australia 3School of Nature Conservation, Beijing Forestry University, Beijing, 100083, China 4...

متن کامل

Mathematical Models of Vegetation Pattern Formation in Ecohydrology

[1] Highly organized vegetation patterns can be found in a number of landscapes around the world. In recent years, several authors have investigated the processes underlying vegetation pattern formation. Patterns that are induced neither by heterogeneity in soil properties nor by the local topography are generally explained as the result of spatial self-organization resulting from ‘‘symmetry-br...

متن کامل

the innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran

آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hydrological Processes

سال: 2023

ISSN: ['1099-1085', '0885-6087']

DOI: https://doi.org/10.1002/hyp.14988